## Interlude on constructions with torsors

Let be a right torsor for some group object . Twisting with will be a functor from objects with a left –action to objects in .

Let be an object with a left –action. The *twist* is defined as the quotient of by the diagonal action of , that is, it is the coequalizer where on generalized elements. If additionally carries a right action by some group object , then evidently the twist also carries a right –action; similarly, if the torsor carries a left action by some group object , then the twist also carries a left –action.

Let’s introduce some notation for the action of the epimorphism on generalized elements. Namely, given a generalized element , I will write for the composition . Because is an epimorphism, to check some relation between generalized elements downstairs it will be enough to check it on generalized elements of the form . Furthermore, if actually comes from a generalized element via projection, then by the coequalizer property we find .

The process of twisting has some exactness properties:

The functor preserves colimits and finite products.

Regarding preservation of colimits, we can in fact construct a right adjoint to . It is given by the functor which sends to the function object whose –action is given by precomposing with the action on . This won’t be particularly important in what follows, so I’ll skip the detailed calculation.

Showing that binary products are preserved is a little more difficult. Let’s first observe that the functor is naturally isomorphic to the identity functor: Consider the commutative diagram This induces a natural transformation which is easily checked to be an isomorphism on generalized elements.

Now, choose a trivializing cover of the torsor . Because pullback in a topos commutes with colimits and limits, it will then be enough to check that, for any and , the natural morphism after pulling back to the corresponding natural morphism in becomes an isomorphism. Since there is a –equivariant isomorphism , the functors and are naturally isomorphic; in particular preserves products, which is exactly what we needed to show.

Preservation of finite products in particular implies that sends group objects in to group objects in . This allows the following construction.

When endowed with the conjugation action of on itself, becomes a group object in . In particular, is naturally a group object in .

It is enough to check that the structure maps , and are equivariant with respect to conjugation. This can be checked on generalized elements where it reduces to the corresponding statement about genuine groups. There, it is a simple calculation.

More generally, if acts on itself via automorphisms, then the twist with respect to this action becomes a new group object. Sometimes, this is called a *form* of . This construction let’s us refine the process of twisting a little bit. It turns out that the twisted object comes naturally equipped with a left group action by . In fact, itself carries a natural left action by . Recall that, since is a righ –torsor, the map given by on generalized elements is an isomorphism. Let’s denote the inverse map by on generalized elements. Then we can construct a commutative diagram where, on generalized elements, and . The commutativity follows from the following calculation: Hence, because colimits commute with products in toposes, we have a morphism where the axioms for a left action can be checked by direct calculation.

This action makes into a left –torsor.

Take an epimorphism which trivializes . Then it will be enough to check that there is a –equivariant isomorphism . Since everything in sight commutes with pullbacks, we might as well assume that is isomorphic to the trivial right –torsor and check that then it is –isomorphic to the trivial left –torsor.

We first need to produce an isomorphism given a –isomorphism . I claim that the composition is an isomorphism. The inverse map is defined by the commutative^{1} diagram where denotes the conjugation action. Hence, we get a chain of isomorphisms^{2} The last thing to check is that this isomorphism is in fact –equivariant, that is, we need to check that the diagram commutes. On generalized elements, the top composition gives while the bottom composition is But this is equal to which proves the required commutativity.

A consequence of this theorem is that the twisting functor may be considered as a functor . Furthermore, if is a left –torsor, then we can choose an epimorphism which trivializes both and . Then, because twisting commutes with products, we find similarly to the proof of the theorem. Hence, twisting restricts to a functor from the category of left torsors to the category of left torsors. Furthermore, if is a left –torsor and a right –torsor, a left –torsor and a right –torsor then there is a natural isomorphism which follows from the fact that colimits commute with colimits and with binary products in toposes.

If is a right –torsor and hence a left –torsor, let denote the right –torsor with action given by on generalized elements. Then is a trivial right –torsor. Furthermore, as group objects and along this identification is a trivial right –torsor. It follows that is an equivalence of categories with weak inverse

Let’s first produce an isomorphism . Let be such that on generalized elements. It is straightforward, albeit tedious, to check that descends to a group homomorphism I claim that this is an isomorphism. To verify this claim, it will be enough to pull back along an epimorphism which trivializes both the right –torsor and the right –torsor , that is, we can assume that is trivial.^{3} So let be a –equivariant isomorphism. We can then set to be the morphism such that on generalized elements. Computing the compositions and on generalized elements, we find and Noticing that where finishes the proof of .

Next, let’s check that is a trivial right –torsor. Let be the diagonal composed with the canonical projection. I claim that this map descends to the quotient which will provide a global section of . This will then imply the claim. The calculation shows that the diagonal is is invariant under the right action of which proves the claim. The last assertion of the theorem is proven in a completely analogous way.

In summary, we have found that twisting with a right torsor is an invertible operation up to isomorphism. This will become essential in the computation of the homotopy groups of at any basepoint.

Remember that in the on the left is the trivial right torsor and the on the right is taken with the conjugation action.↩

Note that denotes the morphism induced by the –equivariant isomorphism , using the fact that twisting is functorial with respect to –equivariant morphisms in both factors.↩

By the proof of the previous theorem, this also implies that is trivial.↩